Command and Control for Simulated Air Agents

Johnathan M. Gratch
University of Southern California
Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292

gratch@isi.edu

Also: Randy Hill, Paul Rosenbloom (PI), Milind Tambe U of Michigan: John Laird (PI)

Outline

- * Command forces for rotary-wing attack missions
 - * Development of RWA Company Commander
 - * Focus primarily on mission planning
- * C3 for Fixed-wing air-to ground missions
 - * Development of C3 nodes:
 - Ground Controller (GCI, TACC, TAD)
 - Forward Air Controller (FAC)
 - Airborne Early Warning (AWACS, E2C)
 - * Focus on run-time assessments and resource allocation
- * All entities implemented in Soar architecture

Overview of Soar

- * High-level: Rule-based system
- * Provides basic architectural support for (and integration of):
 - * Knowledge representation rules and (simple) objects
 - * Decision making integration of preferences from rules
 - * External interaction I/Q through object passing
 - * Reactivity I/Q is within inner loop of decision making
 - * learning chunking of new rules from experience
 - * Psychological modeling time scales

SOAR Applications

- * General approach to planning and simulation
 - * Rotary-wing Commander simulation (in DIS)
 - * Navy Fixed-wing Pilot simulation (in DIS)
 - * Navy C3
 - * Firefighter virtual training environment
 - * Natural Language understanding/protection
 - * Cognitive Modeling
- * Supported by large research community

Resources

* ModSAF

For entity simulation and low-level behavior

* SOAR

For entity high-level behavior

Each entity controlled by knowledge-base of 2000 rules

Capable of planful and reactive behavior

* CFOR (Mitre)

- * CCSIL for inter-agent communication
- * EU- for terrain reasoning
- * Platform Services for Commander's vehicle sensing

PART I: CFOR - Goals

- * RWA Company command entity in ModSAF SCOPE:
 - * Attack mission
 - * Security mission
 - * Reconnaissance mission
- * Battalion command entity
 - * Scope not yet determined
- * Still in early stages of development

CFOR Capabilities

* Inter-agent communication

Receive operation orders and situation reports synchronize with other units (e.g. fire support, \mathring{A} \mathring{C})

* Real-time assessment of battlefield

on-board sensors
remote sensors
inference of enemy intent

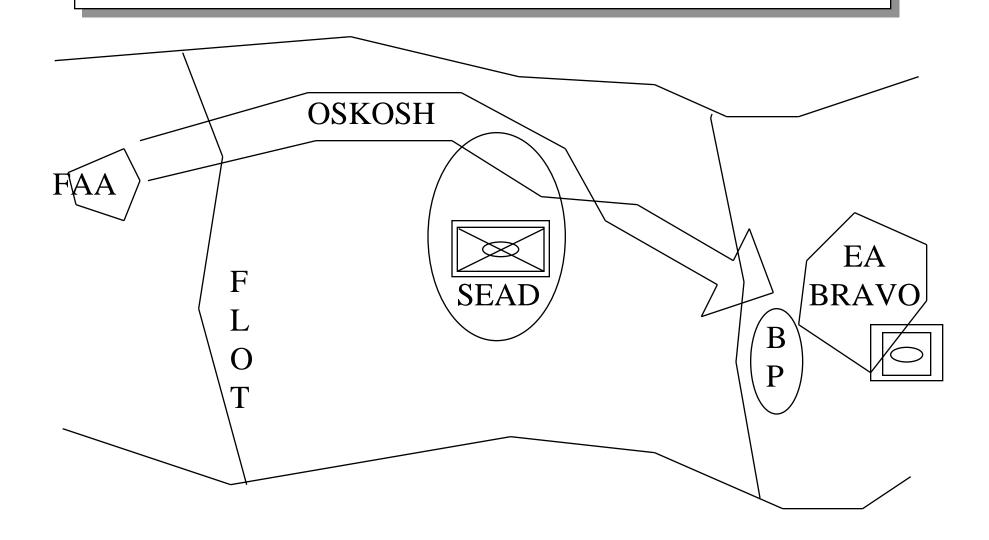
- * Planning and Re-planning based on current situation
- * Terrain Reasoning

Typical Scenario

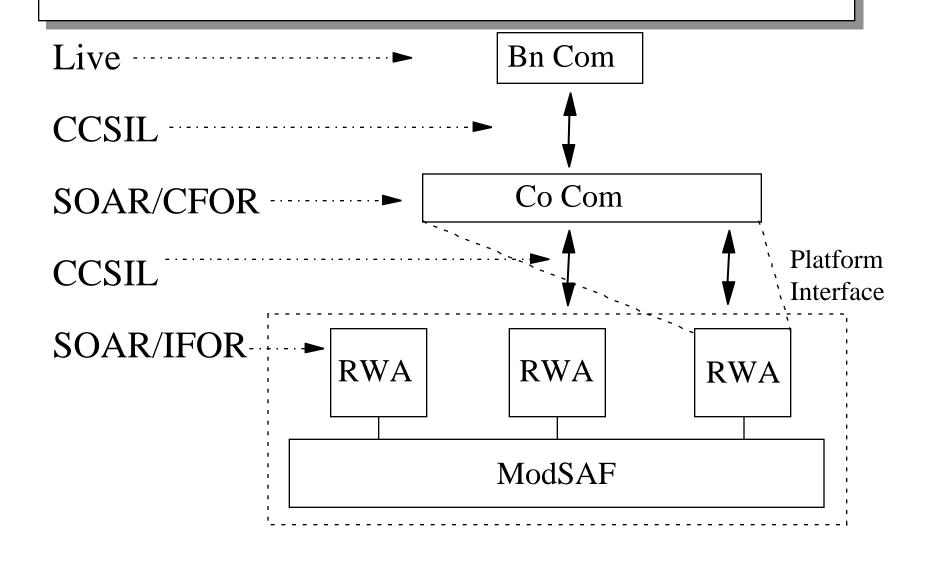
* Entities: Live Battalion Commander

SOAR/CFOR Company Commander
5 SOAR/IFOR RWA"s
ModSAF OPFORs

* Battalion order given to SOAR/CFOR:


Advance along Axis OSHKOSH
Attrit Tank Battalion in engagement area BRAVO
Obey A²C²

*** SOAR/CFOR** elaborates mission


Identify target priorities, firing positions...

* SOAR/CFOR monitors execution and replans as necessary

Typical Plan

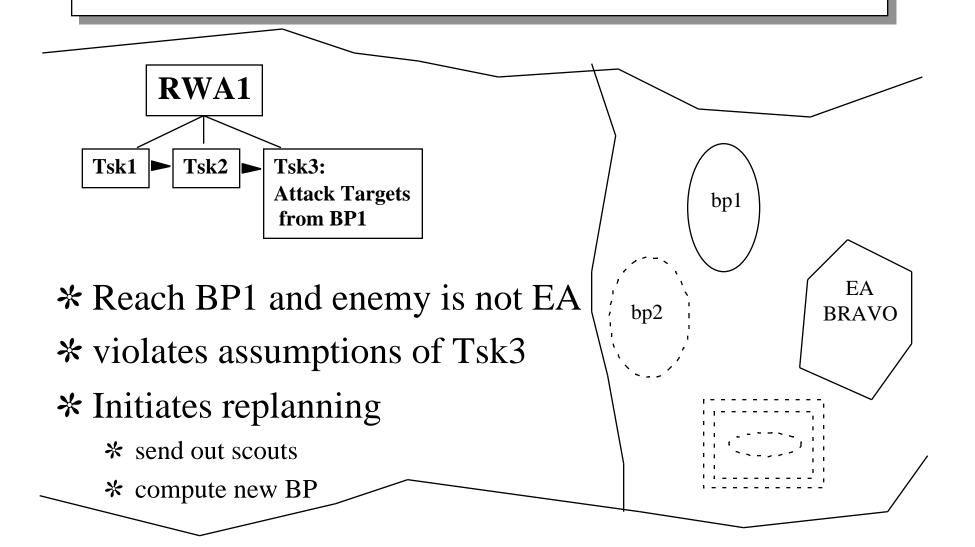
Architecture

Knowledge Representation

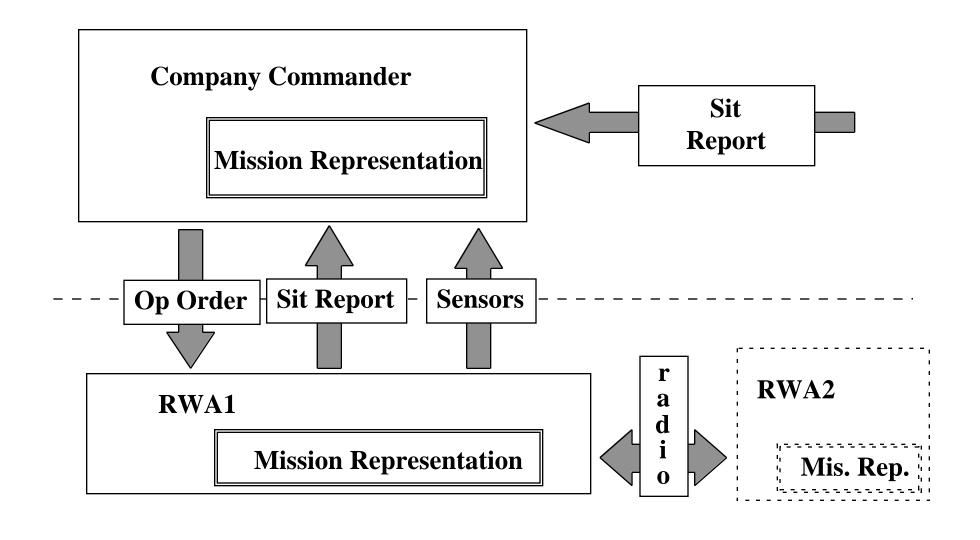
- * Mission planning and monitoring guided by explicit mission representation shared at all levels
- * Roughly equivalent to CCSIL operations order
 - * SITUATION: description of enemy forces, their location, and intents, plans of superior units
 - * MISSION: sequence of tasks
 - * EXECUTION: subordinate plans, coord. information
 - * COMMAND AND SIGNAL
 - * Etc.
- * New information (e.g. Sit Reports) modifies this structure to facilitate dynamic decision making

Mission Planning

* GIVEN


- * CCSIL Bn Order specifying abstract mission spec.
- * Refinement "templates" for elaborating spec. (rules)
- * "Standard Operating Procedures" for missing fields (rules)
- * Generate CCSIL Co Order
- * Annotate mission representation with dependency information
 - * Preconditions and effects associated with tasks
 - * Refinement assumptions added
 - * Timing constraints computed and attached

Mission



- - * help recognize plan inconsistencies
 - * help propagate the effects of new information
 - * e.g. tasks are eliminated if their preconditions/assumptions become violated

Example

Layered Approach

Simulated Battle Context

* Level of decision Representation

- * Company commander in charge of 2-8 RWAs
- * goal of Battalion commander in charge of 2-3 co
- * No long term predictions or resource management

* Representation of Current Battle State

- * Maintained in mission structure

 Determined by OpOrder, platform sensors, sit. reports
- * Parameters; type/location of friendly/enemy units

Simulated Battle context

* Representation of Friendly Battle Plan

- * Entities represent Operations Order received via CCSIL
- * Represented as data structures in rule-based system

* Representation of Enemy Objectives

- * As given in operations order
- * Limited abilities to infer if enemy is a threat
- * New enemy can be identified through sensors

Decision Process

* Assessment of Current/Future Status

- * Commander objectives represented explicitly in op order
- * Rules attempt to correlate sensors with objectives
- * Projection limited to time/place incompatibilities

* Decision Actions

- * Actions are transmitted via CCSIL
- * Represented in explicit mission structure

Decision Process

* Dynamic/Reactive Decision Making

- * Entities react immediately to sensor inputs
- * Command entity responds to changes in mission structure
- * Replans as necessary to maintain integrity of plan

* Doctrinal Context

- * doctrine is represented implicitly

 Agents only represent doctrinally correct responses
- * Architecture supports explicit representation

 Could be expressed as rules that discard non-doctrinal actions

Simulated Support

* Sensor support

- * Sensors provide location, numbers, types, bearings
- * Intent must be inferred from sensors

* Information operation activities

* Friendly activities monitored via sensors and CCSIL

New information has impact if it violates underlying plan

Architectural Aspects

* Command levels at which Live Staff can be used

- * Company Commander or above
- * Required at Battalion command and above
- * Extending simulation vertically

* Required Levels of Fidelity

* all entities simulated at individual unit level commander could be applied to aggregate entities requires CCSIL

Other Issues

* Primary Issues

- * Representing plan assumptions and dependencies
- * Recognizing when dependencies are violated
- * Representing and selecting multiple courses of action

* Research areas

- * Modeling enemy intent
- * "war gaming" plans to recognize bottlenecks, brittleness
- * Learning/explaining plan failures

Part II: C3 - Goals

* FWA Development of C3 nodes SCOPE:

- * Individual aircraft (F14, F18)
- * Section/Division/Package air lead
- * Ground controller (GCI, TACC, TAD)
- * Forward Air Controller (FAC & FAC(A))
- * Airborne Early Warning (AWACS, E2C)
- * In support of Air-to-ground missions

C3 Capabilities

- * Inter-agent communication communications via simulated radio direct units and receive responses
- * Real-time assessment of battlefield on-board sensors (visual, radar, radio) inference of enemy intent
- * Direct subordinate units according to some prestated mission specification
- * Each platform implemented in ModSAF of lowlevel
 - High-level controlled by Soar/IFOR

Simulated Battle Context

* Level of Decision Representation

- * Individual, Section, Division, Package
- * Air controller
- * No long term predictions or resource management

* Representation of Current Battle State

- * Depends on entity

 Some use only radio reports (TACC and TADD)
- * Most combine radio, radar, visual
- * Parameters: type, position, heading, speed, altitude

Simulated Battle Context

* Representation of Friendly Battle Plan

- * Complete representation of own mission little about others
- * Represented as data structures in rule-base system

* Representation of Enemy Objectives

- * Limited to whether enemy is threat or not
- * Some threats known, others identified through sensing or radio

Decision Process

* Assessment of Current/Future Status

- * Rules attempt to correlate sensors with objectives
- * No attempt to project future status

* Decision Actions

* Decisions performed by acting radio messages

Decision Process

* Dynamic/Reactive Decision Making

- * Entities react immediately to sensor inputs
- * Few actions preplanned most in response to current sit.
- * Much of plan representation is implicit in rule structure

* Doctrinal Context

- * Doctrine is represented implicitly
- * Agents only represent doctrinally correct responses
- * Architecture supports explicit representation
- * Could be expressed as rules that discard non-doctrinal actions

Simulated Support

Sensor support

- * Sensors provide location, numbers, types, bearings
- * Intent must be inferred form sensors

* Information operation activities

* Friendly activities monitored via sensors and radio

Decision are responsive to those changes (e.g. lead killed)

Architectural Aspects

- * Command levels at which Live Staff can be used
 - * Humans can be used for any of the command levels
 - * All control must happen through simulated radio
- * Required Levels of Fidelity
 - * all entities simulated at individual unit level

Other Issues

* Primary Issues

- * Capturing appropriate doctrine
- * Handling real human communication

* Research areas

- * Natural Language processing and speech understanding
- * Spatial reasoning for battle planning